
THEATRE Resource Manager Interface

Specification v. 1.0

S. Götz, C. Wilke, M. Schmidt,

S. Cech, J. Waltsgott, R. Fritzsche

Institut für Software- und Multimediatechnik

TUD-FI10-08-Dez. 2010

Technische Berichte

Technical Reports
ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

THEATRE Resource Manager Interface

Specification v. 1.0

Sebastian Götz, Claas Wilke, Matthias Schmidt, Sebastian Cech,
Johannes Waltsgott, Ronny Fritzsche

Technische Universität Dresden, Dresden, Germany

Abstract. Since more than 10 years energy efficiency is a well discussed
research topic in computer science. Because the immediate consumers
of energy are hardware resources, these resources have been subject to
optimization in the first place. But hardware is in turn used by software,
running on top of it. Software offers the interface to the end-user and
thus allows to correlate the utility of end users with energy consumption
by hardware resources. To bridge the gap between the users’ needs and
energy consumption on the hardware level we propose an energy-aware
software architecture. In this paper we focus on a central element of this
architecture: the resource manager.

1 The Key to Energy Efficiency: Bridging the Gap

between Users and Energy

Our research towards an energy-aware software architecture revealed the need
for an energy-aware software development process and the energy auto tuning
runtime environment (THEATRE) [5]. Our work is part of the project Cool-
Software1, which belongs to the CoolSilicon2 cluster of excellence. The two main
concepts in THEATRE are energy and resource managers. Figure 1 depicts the
architecture of THEATRE.

The three layers of our architecture span from the user to the hardware. The
users’ needs are the utility which is gained in turn from energy consumption.
But users interact with software, which runs on top of operating systems, virtual
machines and so on. We see operating systems and virtual machines as virtual
resources. Resources in general are represented by resource managers. Resource
managers provide information about their resources and are able to steer them.
Energy managers use this information and combine it with their knowledge on
valid application component compositions to derive an energy-optimal configu-
ration (component composition and deployment). Each software component has
an own energy manager, which provides information about the component and
offers functionality to deploy, redeploy or reconfigure the corresponding com-
ponent. The top-most layer focuses on the users’ needs, which are collected by
so-called contextors. Besides collecting the users’ expectations, they also collect

1 http://www.cool-software.org/
2 http://www.cool-silicon.de/

2 Sebastian Götz et al.

RĞƐŽƵƌĐĞƐ ;HĂƌĚǁĂƌĞ͕ OS͕ VM͕ ͙Ϳ

Software Components

Global Energy

Manager

Local Energy

Manager 1

Local Energy

Manager 2

Local Energy

Manager 1.2

Local Energy

Manager 1.1

Global Resource

Manager

Local Resource

Manager 1

Local Resource

Manager 2

Local Resource

Manager 2.1

Users

E
n
e
rg
y
E
ff
ic
ie
n
cy

Contextor

Fig. 1. The architecture of THEATRE.

information for workloads on the system. Such workloads are service requests
created by users through the user interface of the software system. Energy man-
agers know what software components require and provide in return. They know
about valid system configurations, that is deployments of software components
onto resources. After identifying all valid system variants, these variants are
assessed in terms of their cost and utility. The variant providing the best combi-
nation of cost/utility will be the goal of the reconfiguration, which is forced by
the energy manager. Reconfiguration includes the selection of another compo-
nent implementation, whereas redeployment triggers the migration of a software
component from one resource to another.

All resource specific information is aggregated up the hierarchy into the
global resource manager (GRM). The global resource manager is in turn able
to disseminate requests from the global energy manager (GEM). The migration
of components might lead to under-utilization of resources. In such a case the
global energy manager can request the global resource manager to shut down
the under-utilized resource. Before the request can be processed remaining com-
ponents are migrated to another resource. If all resources are fully utilized, but
a further component has to be deployed, the global energy manager will request
a new resource from the global resource manager. Hence, the global energy man-
ager renders the decisions, which base on information provided by the resource
managers and local energy managers.

Figure 2 depicts the autonomic control loop [3], which outlines how THEATRE
works and elaborates on the interaction between the global energy and resource

THEATRE Resource Manager Interface Specification 3

Collect

Analyse

Decide

Act

Fig. 2. Energy and Resource Managers in the Autonomic Control Loop [3].

manager. First, information about the energy behavior of resources needs to be
collected. Second, this data has to be analyzed by finding mappings onto the
valid system configurations, so an order in terms of energy efficiency is deter-
mined for these variants. Third, this order is used to decide for the best configu-
ration. Forth and last, the system has to be reconfigured to the newly computed
configuration.

Collecting data, as well as parts of the reconfiguration, are the responsibility
of the resource managers. Analyzing the data, determining the best configuration
and forcing the reconfiguration is the responsibility of the energy managers.

Determining the best configuration cannot rely solely on data collected by the
resource manager. This is, because the users’ utility (i.e. user metrics, perceptible
qualities to the user [4], like application response time) is the key to energy
efficiency:

efficiency =
utility

energy
=

n∑

i=0

(usermetrici ∗ wi)

energy
(1)

e.g.
=

response time ∗ resolution

energy
(2)

Each user metric has a weight wi, which defines the importance of that metric
to the user. Like resource managers, required to collect energy related data, we
need contextors, which collect data about the users’ wishes and demands.

Furthermore, constraints provided by the application developer need to be
considered. Developers need to be able to set quality constraints for their com-
ponents, which cannot be deceeded. We propose to use ECL contracts [9], which
specify all valid quality variations of a component.

Besides determining the optimal ratio of user utlity and energy consumption,
our approach allows to compare user utilities in terms of their energy require-
ments. Such a comparison can be used to derive pricing models for software
applications in accordance to different provided qualities.

4 Sebastian Götz et al.

The general architecture of THEATRE hence consists of contextors, which
collect the users’ demands, resource managers collecting information from and
steering resources and energy managers, which analyze the collected data and
derive according decisions. This paper focuses on resource managers and their
interface required by the energy managers.

2 Resource Manager Interface Description

We focus on hierarchically structured resources, whose interconnections form a
graph. Resources are hierarchical in the sense, that single resources are grouped
by functionality for a given purpose. Classical servers are resources, but consist of
many resources, too. Servers typically include several hard disks, volatile mem-
ory, a central processing unit (CPU), possibly a graphical processing unit and so
on. CPUs, for example, consists in turn of multiple cores, again forming separate
resources. We decide between resources, which can host component containers
(ContainerProvider) and resources which cannot. This distinction is necessary
to define deployments of software components onto resources. Moreover, we di-
vide also resources into direct energy consuming resources and indirect energy
consuming resources. Direct energy consuming resources (PhysicalResources)
are physical devices like CPUs or hard disks where indirect energy consuming
resources (Resources) are logical ones. They may group one or more physical
devices (e.g. a servers) or purely logical like OS or virtual machines. Container
providers are also logical resources too.

2.1 Requirements of Resource Managers

In THEATRE each resource is managed by its own resource manager. The re-
source managers have to fulfill the following five requirements:

/REQ1/ infrastructure - knowledge about the system infrastructure (which
resources exists, how they are connected),

/REQ2/ resource properties - knowledge about device properties (from spec-
ifications and/or measurements),

/REQ3/ energy behavior - knowledge about energy behavior in correlation to
offered services (e.g., how much energy is consumed for storing 200 MB
of data),

/REQ4/ resource control - resource lifecycle management (power on/off, sleep-
mode force),

/REQ5/ deployment - software components need to be deployed onto contain-
ers, which are resources, too.

The first three requirements are used by the GEM to rate the valid system
configurations and thereby to determine the best ones. The forth and fifth re-
quirement are used by the GEM to perform system reconfigurations. Figure 2
depicts the control loop of autonomic communication and the responsibilities of
energy and resource managers.

THEATRE Resource Manager Interface Specification 5

R2

R 2.1

R1 R3

R 1.1 R 1.2 R3.1 R3.2

R3.1.1

LRM 1 LRM 3LRM 2

LRM 1.1 LRM 1.2 LRM 3.1 LRM 3.2

LRM 3.1.1

LRM 2.1

GRM

connectednot

connected

neighborneighbor

partner

Fig. 3. Example Resource Manager Structure.

2.2 Interface Description for Local Resource Managers

Implementations of all common local resource managers in THEATRE for spe-
cific resources need to adhere to the interface specified in Listing 1. Client to
this interface will be the GEM and resource managers playing the parent-role.
As the Global Resource Manager and the Container Providers offer special func-
tionally like maintaining the overall infrastructure or deployment of software
components, their interface will be specified separately (see section 2.3 and 2.4).

/REQ1/ Infrastructure Resource managers provide information about the
hardware infrastructure. Each resource has its own resource manager, which
knows about adjacent resource managers. Not every resource manager needs to
be attached to a physical resource. Instead virtual resources, grouping several
physical or further virtual resources, are allowed. The top-most resource manager
is the global resource manager (GRM). All other resource managers are local
resource managers (LRM). Figure 3 depicts an example structure of resource
managers, comprising three different resources (R1, R2 and R3). Each resource
can have multiple sub-resources. Resource R1 might be a central processing
unit, where R1.1 and R1.2 are two cores. Resource R2 can connect to R1 and
R3. Hence the resources R1 and R3, as well as their resource managers, form
the neighborhood of R2. R2 is currently connected to R3. Therefore R3 and its
manager is a communication partner of R1 (and its manager).

As resources are hierarchical, their resource managers have a parent and
multiple child managers, which can be requested using the methods getParent-
Mgr() and getSubResourceMgrs(). Resource managers of different resources
are able to connect to each other in a neighborhood (getNeighbours()). Each

6 Sebastian Götz et al.

1 interface ResourceMgr {
2
3 /∗ /REQ1/ i n f r a s t r u c t u r e ∗/
4 ResourceMgr getParentMgr () ;
5 Li s t<ResourceMgr> getSubResourceMgrs () ;
6 L i s t<ResourceMgr> getNeighbours () ;
7 L i s t<ResourceMgr> getPartner s () ;
8
9 /∗ /REQ2/ dev i c e p r o p e r t i e s ∗/

10 List<Str ing> getAllResourcePropertyNames () ;
11 Lis t<State> getResourceState s () ;
12 Map <Str ing , Object> ge tResourcePrope r t i e s () ;
13 Object getResourceProperty (S t r ing name) ;
14 Lis t<Serv i ce> ge tResourc eSe rv i c e s () ;
15
16 /∗ /REQ3/ energy behav ior per s e r v i c e ∗/
17 double getPredictedEnergy (Workload w) ;
18
19 /∗ /REQ4/ con t r o l ∗/
20 State getCurrentState () ;
21 StateChange t r i g g e r S t a t e (State s , int p r i o r i t y) ;
22 StateChange checkStateChange (State s) ;
23 boolean isStateChangeComplete (StateChange sc) ;
24 void setStateChangeComplete (StateChange sc) ;
25 }

Listing 1. Local Resource Manager Interface Specification

resource can have established connections to none up to all of its neighbors.
The resource managers of currently connected resources can be requested using
method getPartners(). The concept of neigbours enables the GEM and the
GRM to determine similar resources for migrating software components onto
them. Furthermore, the ability to express established connections between re-
sources prevents to shut down under-utilized resources as long as they are re-
quired by others.

/REQ2/ Resource States, Properties and Services Each resource has at
least two states: On and Off. But many resources provide further sleep or per-
formance states, like defined in ACPI [6]. A resource manager needs to know
about all states provided by its resource (getResourceStates()), because these
states are used for energy use prediction (/REQ3/) and to control the resource
(/REQ4/). Current hard disk drives usually provide five power states: Off,
Sleep, DeepSleep, Idle and Active. Some drives even provide more states,
like BurstWrite or special low-power read modes. Besides knowledge about the
states, the transitions between them need to be known, too.

THEATRE Resource Manager Interface Specification 7

To access the properties of a resource, there exists severall methods. getAll-
ResourcePropertyNames() returns a list containing the names of all properties
of a resource. Given a property’s name, getResourceProperty(String name)

returns the value for the specific property. getResourceProperties() combines
both methods returning a map of name-value pairs of the resource’s properties.

The properties of resources are best described using the concept of quality
characteristics as introduced in CQML [1] and CQML+ [7]: our Energy Contract
Language (ECL). Quality characteristics describe functional and non-functional
properties of resources and software components. Such characteristics are named,
have a domain and optionally a value clause. The following code snippet shows
an example quality characteristic for a network connection: dataRate.

1 characteristic dataRate (connect ion : Network) {
2 domain numeric real b i t / second ;
3 value connect ion . getDataRate () ;
4 }

Listing 2. Exemplary ECL Contract.

Resources provide Services to their clients. The method getResourceSer-

vices() has to return all offered services of the resource, which in turn can
be used to describe workloads for that resource. Services are named and are
allowed to have an arbitrary set of Parameters, as describe by the interface
definition given in Listing 3.

1 interface Se rv i c e {
2 St r ing getName () ;
3 Lis t<Parameter> getParameters () ;
4 }
5
6 interface Parameter {
7 St r ing getName () ;
8 S t r ing getType () ;
9 Boolean setValue (Object v) ;

10 Object getValue () ;
11 D i r e c t i on g e tD i r e c t i on () ;
12 }
13
14 enum Dir e c t i on {
15 IN , OUT, INOUT;
16 }

Listing 3. Service and Parameter Specification

Parameters have a name, type, value and a direction. The direction

determines whether the Parameter is an input, an output or a bidirectional
Parameter. The corresponding parameter types are described in the enumeration
Direction.

8 Sebastian Götz et al.

/REQ3/ Energy Behavior with Energy State Charts The base for re-
quirement /REQ3/ is an energy state chart based simulator, which is able to
predict energy use for a specified workload (getPredictedEnergy(Workload).

Workloads are sequences of workload items (Occurences), where each Occurence
has a specified point in time (when will it occur), a specified amount of work
to be done and refers to the Pin which handles the work. Resources are compo-
nents (i.e. are named and explicitly describe what they require/provide). They
expose the sleep/performance states they offer and the values of certain qual-
ity characteristics, like bytes read per second. Resource properties are allowed
to change over time, but currently the decisions made by the GEM rely on the
values collected at a single point time.

1 interface Workload extends I t e r a b l e {
2 I t e r a t o r<WorkloadItem> i t e r a t o r () ;
3 }
4
5 interface Occurence {
6 Pin getPin () ;
7 i n t getTime () ;
8 i n t getAmount () ;
9 }

Listing 4. Workload Specification

StateChart

State Transition Variable Workload

* * * 0..1

initial

1
src

1

1

tgt

Event

Guard

Action

0..1

0..1

0..1

Occurence

0..*

1

CostParam power

͙
CostParam delay

CostParam power

͙

Composed

Behavior

1..*

{ordered}

Service

R.Mgr

*

BehaviorTemplate Pin
1..*

StmStructural

Element

CostParam
2..*

1..*

ServiceReq

Fig. 4. Energy State Chart Meta Model.

THEATRE Resource Manager Interface Specification 9

Idle

(5W)

Active

(15W)

Sleep

(3W)

deep-sleep

(1W)

[t>10s] [t>30s]

write/read

write/read

w
ri

te
/r

e
a

d

d
o

n
e

1W/1s 1W/1s

10W/15s
5W/8s

2
W
/1
s

1
W
/0
s

Fig. 5. Energy State Chart Example: Hard Disk Drive.

1 interface State {
2 St r ing getName () ;
3 double getPower () ;
4 Action get InAct ion () ;
5 Li s t<Trans i t ion> getFanOut () ;
6 }

Listing 5. Public State Interface

The State interface (c.f. Listing 5) is defined in energy state charts (in-
troduced by Benini et al. [2]) as we use an extended version in THEATRE.
Figure 4 depicts the energy state chart meta model. A StateChart is a specific
BehaviorTemplate which may consists of several Pins encapsulating behavior
internals. In case of energy state charts a request to a Pin triggers a transistion
by reffering an Event. Which transitions is triggered depends on the current
state. An other difference to usual state machines is, that states and have a de-
fined power consumption rate and transitions are delayed and power-consuming,
too. This is expressed by defining CostParameters for states and transtistion.
In order to simulate such an energy state chart all cost parameters has to be
bound to concrete values. In the current version, we do not support complex
states. Mutliple state charts can be run in parallel using a ComposedBehavior.
Our simulator is able to handle these charts fully concurrently. This is possible,
because workloads define a concrete path through the charts, and these paths
can be partitioned. Figure 5 shows an exemplary energy state chart for a hard
disk drive with four power states: Idle, Sleep, DeepSleep and Active. Note,
that a state change from DeepSleep to Active takes much more power and time
than from Idle to Active (because the disk needs to spin up).

Energy state charts can be derived using experimental measurements or
(rarely) from resource specifications. As mentioned above workloads are a se-
quence of occurences (workload items) with a specified time and an amount of
work to be done as well as a reference to pin responsible to handle requests.

10 Sebastian Götz et al.

The occurences base on the services offered by the resource. Depending on the
service parameters and the type of service the amount of work is determinable.
There are three kinds of services [8]:

1. Services always behaving the same
2. Services behaving with respect to their parameters
3. Service behaving independently to their parameters

Although the first two kinds allow to automatically derive the amount for a
service request, the third does not. In consequence the developers’ knowledge is
required. An example for the third kind of service are database requests, whose
behavior depends on the contents of the database.

As our proposed software architecture explicitly models the relationship of
software components and resources, our runtime environment is able to deter-
mine the amount of work for methods of the third kind. This is, because the
amount of work of such methods depends on the nature and size of external
resources. The direct relationship pointing to these external resources allows to
derive the amount of as if these resources are parameters, i.e. like for methods
of the second kind.

/REQ4/ Resource Lifecycle Management Finally, resources need to be
controllable by their resource manager. The set of states provided by the resource
may vary depending on the resource’s nature. Nevertheless, as stated before, all
resources have to support at least two states: On and Off, so that the resource
manager can trigger these state changes. Changing the state of a resource implies
a cost in terms of time and energy, as described by the transitions in energy state
charts. The methods for /REQ4/ hence have to return a Cost object (Listing 6).

1 interface Cost {
2 Double getReqEnergy () ;
3 Float getReqDelay () ;
4 }
5
6 interface StateChange {
7 Cost getCost () ;
8 Time getStartTime () ;
9 State ge tS r cS ta t e () ;

10 State getTargetState () ;
11 }

Listing 6. Cost and StateChange Interface Description

The decision, whether to put a resource in a given state or not, depends on
the cost for the state change. Hence, higher order managers needs to be able
to get the cost for a state change without forcing the resource to perform the
state change. For this purpose method checkStateChange(State) can be used.
Forcing a state change means to hardly, that is immediately, switch to the new
state. In many cases an immediate change is not possible. To softly switch to a

THEATRE Resource Manager Interface Specification 11

new state the triggerStateChange(State s, int priority) can be used. It
returns a StateChange object, which comprises the time, when the change will
start, besides the costs for the change (c.f. Listing 6). Additionally, the method
getCurrentState() allows higher order managers to reflect on the current state
of the resource, especially in regard to its power consumption rate.

Futhermore, a method isStateChangeComplete(StateChange sc) exists,
which returns true, if the given StateChange has been done yet. This method
might be needed to define startup and shutdown scripts. Imagine two resources
R1 and R2 and R1 uses R2. To shutdown these resources correctly, R1 needs
to be shut down before R2, because else R1 is likely to get into an error state.
Starting up both resources, requires R2 to be started before R1 is.

Finally, the method setStateChangeComplete(StateChange sc) can be used
to enable the resource manager to (asynchronously) inform about a succesful
excecution of a specific state change, so that isStateChangeComplete(State-
Change sc) do not has to be called periodically.

2.3 Interface Description for Global Resource Manager

The global resource manager (Listing 7) extends the local resource managers’
interface regarding functionallity to register and unregister other resource man-
agers and, thus, control the whole infrastructure.

/REQ1/ Infrastructure The global resource manager needs to implement
the register(URI) and unregister(URI) method. This methods are used by
server-level resource managers to register/unregister themselves at the global
resource manager. This way resources can be added to and removed from the
infrastructure.

1 interface GlobalResourceMgr extends ResourceMgr{
2
3 /∗ /REQ1/ i n f r a s t r u c t u r e ∗/
4 boolean r e g i s t e r (URI r e sou r c e) ;
5 boolean un r e g i s t e r (URI r e sou r c e) ;
6 }

Listing 7. Global Resource Manager Interface Specification

2.4 Interface Description for Container Provider Managers

The interface of the container provider managers (Listing 8) extends the local
resource managers’ interface regarding functionallity to deploy and undeploy
software components.

/REQ5/ Deployment of Software Components Component containers
(ContainerProviders) are special resources since they provide functionality to
deploy and undeploy software components. In our current architecture, each

12 Sebastian Götz et al.

server hosts a single container. In consequence, resource managers responsible
for servers provide an implementation for the methods grouped under /REQ5/.

These managers are of high importance to our overall approach, because the
reconfiguration plans of the global energy manager are comprised of migration
and redeployment commands. Managers, which are able to (un-)deploy software
components need to implement isContainer() returning true.

The functionality of a such a manager divides into two parts: act and check.
Software components can be deployed or undeployed using method deploy(..)

and undeploy(..). To determine, whether deploying or undeploying a cer-
tain component variant is possible, the methods checkDeploy(..) and check-

Undeploy(..) can be used. The migration of a software component is not sub-
jected to the local resource managers, as each manager knows only about its
own server/container. The global resource manager, which knows all server-level
resource managers, implements migrate(..) and checkMigrate(..).

1 interface ContainerProviderMgr extends ResourceMgr {
2
3 /∗ /REQ5/ deployment ∗/
4 boolean i sConta ine r () ;
5 boolean deploy (S t r ing id ,
6 URI softwareComponentImpl ,
7 URI conta ine r) ;
8 boolean undeploy (S t r ing id , URI conta ine r) ;
9 boolean migrate (S t r ing id ,

10 URI srcConta iner ,
11 URI targe tConta ine r) ;
12 boolean checkDeploy (S t r ing id ,
13 URI softwareComponentImpl ,
14 URI conta ine r) ;
15 boolean checkUndeploy (S t r ing id , URI conta ine r) ;
16 boolean checkMigrate (S t r ing id ,
17 URI srcConta iner ,
18 URI targe tConta ine r) ;
19 }

Listing 8. Container Provider Manager Interface Specification

3 The Global Energy Manager in a Nutshell

Client to the Global Resource Manager (GRM) is the Global Energy Manager
(GEM), which acts in five phases:

/P1/ identification - derive all valid system variants,
/P2/ assessment - assess these variants,
/P3/ selection - determine the best variant,
/P4/ planning - construct a reconfiguration plan,
/P5/ acting - communicate the plan to the GRM.

THEATRE Resource Manager Interface Specification 13

3.1 /P1/ identification

The derivation of all valid system variants requires the knowledge of the GRM
about all existing containers and what they offer. A system variant is valid,
if the deployment of concrete software component implementations onto con-
tainers for a given workload adheres to the resource requirements stated in the
ECL contracts. Imagine a software component Sort, which has two different
implementations: QuickSort and BubbleSort. Further imagine there are two
servers. Server 1 has 512 MB RAM, whereas Server 2 has 2 GB RAM. Further-
more, a user wants to sort a list, which has a size of 1 GB. The system variant
identification should return two valid system variants: (QuickSort, Server 2) and
(BubbleSort, Server 2). Theoretically two further system variants exist. Namely
those of the two implementations onto Server 1. But these are not valid, because
Server 1 cannot handle a list of 1 GB size with the two implementations of Sort.

3.2 /P2/ assessment

To assess the variants the GRM needs to be able to predict the energy con-
sumption for a specified workload. The assessment phase also uses information
provided by contextors from the user layer. The assessment of the valid sys-
tem variants leads to two additional values for the variant: the cost and utility.
Whereas the utility is determined using information provided by the contextors,
the cost is to be returned by the global resource manager. The energy use is eval-
uated according to the system variant and the workload. Remind the example
from above. The two variants will be extended to (QuickSort, Server 2, 400 J, 5)
and (BubbleSort, Server 2, 300 J, 3). The users utility is (in the end) a priority
starting with 1 as the lowest priority. Thus, in the example, quick sort on server
two has a higher priority than bubble sort. (remind it’s just an example)

3.3 /P3/ selection

The determination of the best variant is independent of the GRM and contex-
tors, because it relies on the assessment information from the former phase.
Heuristics are a simple approach to determine the best system variant, but lin-
ear approximination, neural nets and further approaches are possible, too. An
easy way to determine the best variant in the example from above is to divide
the cost by the utility. The higher the utility, the lower the ratio of energy costs
and utility will be. In the example quick sort on Server 2 evaluates to 80 J and
bubble sort on Server 2 to 100 J. Hence quick sort on Server 2 is choosen.

3.4 /P4/ planning

The construction of the reconfiguration plan does not directly use the GRM,
too. Instead it uses the information from the derived variants (first phase), which
includes the information, onto which containers each software component shall
be deployed. Imagine, that in the example from above, an instance of quick sort

14 Sebastian Götz et al.

is running on Server 2. A third server is added, which has more than 1 GB
RAM and this can be used to handle the example problem. Due to more modern
hardware the system variant (quick sort, Server 3) is assessed to only 250 J and
the same utility. The resulting 50 J (250 J divided by 5) lead to the selection
of this variant. The current variant is (quick sort, Server 2). A reconfiguration
plan for this scenario would simple state: migrate(quick sort instance 1, Server 2,
Server 3). More complex scenarios lead to scripts of migrate, deploy and undeploy
statements.

3.5 /P5/ acting

The last phase requires the GRM to process the migrations and deployments.
Additionally, underutilized resources shall be forced to sleep and over utilized
resources shall lead to the activation of new servers, virtual machines or con-
tainers.

4 Conclusion

The direct consumers of energy are hardware resources. Nevertheless, these re-
sources are utilized by many abstraction layers on top of it: Virtual Machines,
Operating Systems, Component Containers and Software Components. The user
interacts with software applications, composed from software components run-
ning in component containers, and thereby indirectly causes energy consump-
tion. Our goal is to bridge the gap between the users’ needs (utility) and energy
consumption taking place on the hardware level to build an energy auto tuning
runtime environment (THEATRE) which is self-optimizing in terms of energy
efficiency. THEATRE bases on an energy-aware software architecture, whose ba-
sic building blocks are components, which are connected to each other and to
resources by contracts.

This paper focused on a central part of THEATRE: the resource manager.
We stated the requirements for resource managers and derived the functionality,
which has to be provided by them. In essence five requirements exist. First,
resource managers need to provide knowledge about the resource infrastructure.
Second, resource managers need to provide knowledge about their resources.
Third, resource managers need to be able to predict future energy consumption
of their resource in accordance to a service provided by the resource or a specified
workload. Fourth, resource managers need to be able to steer their resources.
That is, they need to be able to force their resources into a specified state (at
least On and Off). Finally, resource manager must be able to allow deployment
and migration of software components to enable reconfiguration at runtime.

This document is meant to serve the purpose of decoupling the realization
of resource managers for specific hardware resources from the development of
THEATRE and energy oriented software development (EOSD). The current
version of this document does not present a final specification, but rather a
specification, which is subject to forthcoming changes.

THEATRE Resource Manager Interface Specification 15

5 Acknowledgments

This work emerged from the research project CoolSoftware, part of the Cool-
Silicon cluster and has been funded by the Bundesministerium für Bildung und
Forschung. We would like to thank our advisers Prof. Aßmann, Prof. Meißner
and the Silicon Saxony e.V.

References

1. J. O. Aagedal. Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo, Norway, 2001.

2. Luca Benini, Robin Hodgson, and Polly Siegel. System-level power estimation and
optimization. In Proceedings of the International Symposium on Low Power Elec-
tronics and Design (ISLPED-98), pages 173–178, New York, August 10–12 1998.
ACM Press.

3. Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gäıti, Erol Ge-
lenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and Franco
Zambonelli. A survey of autonomic communications. ACM Trans. Auton. Adapt.
Syst., 1(2):223–259, 2006.

4. Jason Flinn. Extending Mobile Computer Battery Life through Energy-Aware Adap-
tation. PhD thesis, School of Computer Science, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, December 2001.

5. Sebastian Götz, Claas Wilke, Matthias Schmidt, Sebastian Cech, and Uwe Aßmann.
Towards energy auto tuning. In Proceedings of First Annual International Confer-
ence on Green Information Technology (GREEN IT), 2010.

6. Hewlett-Packard, Intel, Microsoft, Phoenix Technologies, and Toshiba.
Advanced configuration and power interface specification, revision 4.0a.
http://www.acpi.info/spec.htm, April 2010.

7. Simone Röttger and Steffen Zschaler. Cqml+: Enhancements to cqml. In In Proceed-
ings of the 1st International Workshop on Quality of Service in Component-Based
Software Engineering, pages 43–56. Cpadus-ditions, 2003.

8. Chiyoung Seo, Sam Malek, and Nenad Medvidovic. An energy consumption frame-
work for distributed java-based systems. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, Atlanta,
Georgia, USA, New York, NY, USA, 2007. ACM Press.

9. Claas Wilke, Sebastian Cech, Sebastian Götz, Matthias Schmidt, Johannes Walts-
gott, and Ronny Fritzsche. Energy contract language (ecl) specification v0.1. Tech-
nical report, Technische Universität Dresden, Dresden. Germany, 2010.

